首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2830篇
  免费   214篇
  国内免费   1篇
  2023年   25篇
  2022年   16篇
  2021年   68篇
  2020年   56篇
  2019年   77篇
  2018年   116篇
  2017年   94篇
  2016年   117篇
  2015年   143篇
  2014年   144篇
  2013年   198篇
  2012年   239篇
  2011年   225篇
  2010年   153篇
  2009年   108篇
  2008年   158篇
  2007年   159篇
  2006年   161篇
  2005年   117篇
  2004年   102篇
  2003年   105篇
  2002年   83篇
  2001年   47篇
  2000年   21篇
  1999年   19篇
  1998年   17篇
  1997年   10篇
  1996年   12篇
  1995年   15篇
  1994年   17篇
  1993年   10篇
  1992年   10篇
  1991年   12篇
  1990年   10篇
  1989年   11篇
  1988年   19篇
  1986年   8篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   7篇
  1979年   8篇
  1978年   9篇
  1975年   10篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1970年   8篇
  1969年   6篇
  1968年   7篇
排序方式: 共有3045条查询结果,搜索用时 31 毫秒
101.
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.  相似文献   
102.
The dominant microbial components of fluids from wells in pristine and water-injected, high-temperature, Western Siberian oil fields, were analyzed by PCR-DGGE. Particular emphasis was placed on sulphate-reducing organisms, due to their ecological and industrial importance. Bacterial phylotypes obtained from the non-water-injected Stolbovoye oil field were more diverse than those from the Samotlor field, which is subject to secondary oil recovery by reinjection of recycled production water. The majority of phylotypes from both sites were related to Firmicutes. The low similarity to their closest relatives indicates unique bacterial communities in deep underground production waters and crude oil. Archaeal phylotypes detected only in the Samotlor samples were represented by Methanosarcinales and Methanobacteriales.  相似文献   
103.
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.  相似文献   
104.
We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor – a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon‐specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.  相似文献   
105.
The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109‐5 forms a two‐component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N‐terminal sensor domain causes the C‐terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen‐deuterium exchange coupled to mass spectrometry (HDX‐MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX‐MS studies on the AfGcHK:RR complex also showed that the N‐side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the β‐strand B2 area of the RR protein's Rec1 domain, and that the C‐side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and β‐strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375–1389. © 2016 Wiley Periodicals, Inc.  相似文献   
106.
Mouse Nkrp1a receptor is a C‐type lectin‐like receptor expressed on the surface of natural killer cells that play an important role against virally infected and tumor cells. The recently solved crystal structure of Nkrp1a raises questions about a long loop region which was uniquely extended from the central region in the crystal. To understand the functional significance of the loop, the solution structure of Nkrp1a using nuclear magnetic resonance (NMR) spectroscopy was determined. A notable difference between the crystal and NMR structure of Nkrp1a appears in the conformation of the long loop region. While the extended loop points away from the central core and mediates formation of a domain swapped dimer in the crystal, the solution structure is monomeric with the loop tightly anchored to the central region. The findings described the first solution structure in the Nkrp1 family and revealed intriguing similarities and differences to the crystal structure. Proteins 2016; 84:1304–1311. © 2016 Wiley Periodicals, Inc.  相似文献   
107.
Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li+, Na+, K+, Rb+, Ag+, and Et4N+) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178–192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time‐dependent Density Functional Theory (TDDFT) simulations did not allow band‐to‐band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420–428, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
108.
109.
Phytochemistry Reviews - Cytokinins are plant hormones and play essential roles in regulating plant growth and development. They also have diverse pharmacological effects in animals and humans....  相似文献   
110.
Two filamentous cyanobacteria of the genera Scytonema and Tolypothrix were reported to be effective for stabilizing soil in arid areas due to the production of significant amounts of extracellular polysaccharides (EPS). These EPS may also have applications in the biotechnology industry. Therefore, two cyanobacterial species, Scytonema tolypothrichoides and Tolypothrix bouteillei were examined using crossed gradients of temperature (8–40°C) and irradiance (3–21 W m?2) to identify their temperature and irradiance optima for maximum biomass and EPS production. According to their reported temperature requirements, both strains were considered mesophilic. The optimum growth range of temperature in S. tolypothrichoides (27 to 34°C) was higher than T. bouteillei (22–32°C). The optimum irradiance range for growth of S. tolypothrichoides (9–13 W m?2) was slightly lower than T. bouteillei (7–18 W m?2). Maximum EPS production by S. tolypothrichoides occurred at similar temperatures (28–34°C) as T. bouteillei (27–34°C), both slightly higher than for maximum growth. The optimum irradiance range for EPS production was comparable to that for growth in S. tolypotrichoides (8–13 W m?2), and slightly lower in T. bouteillei (7–17 W m?2). The Redundancy Analysis confirmed that temperature was the most important controlling factor and protocols for field applications or for mass cultivation can now be developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号